Step of Proof: trans_rel_self_functionality
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
trans
rel
self
functionality
:
T
:Type,
R
:(
T
T
).
Trans(
T
;
x
,
y
.
R
(
x
,
y
))
{
a
,
a'
,
b
,
b'
:
T
.
R
(
b
,
a
)
R
(
a'
,
b'
)
R
(
a
,
a'
)
R
(
b
,
b'
)}
latex
by ((((Unfolds ``trans guard`` 0)
CollapseTHENM (RepD))
)
CollapseTHEN ((Auto_aux (first_nat
C
1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
R
:
T
T
C1:
3.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
C1:
4.
a
:
T
C1:
5.
a'
:
T
C1:
6.
b
:
T
C1:
7.
b'
:
T
C1:
8.
R
(
b
,
a
)
C1:
9.
R
(
a'
,
b'
)
C1:
10.
R
(
a
,
a'
)
C1:
R
(
b
,
b'
)
C
.
Definitions
t
T
,
{
T
}
,
x
(
s1
,
s2
)
,
Trans(
T
;
x
,
y
.
E
(
x
;
y
))
,
P
Q
,
,
x
:
A
.
B
(
x
)
origin